Physics Phor Phun Templeton, CA

Binomial Theorem and Counting

Binomial Theorem

The binomial $(a+b)$, its perfect square $(a+b)^{2}=a^{2}+2 a b+b^{2}$, and its perfect cube $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$, have a real meaning shown in the following pictures on the left. We can't draw a picture for higher powers like $(a+b)^{4}$ but we can still do the math. One method is Pascal's triangle on the right.

(Area)
$(a+b)^{2}=1\left(a^{2}\right)+2(a b)+1\left(b^{2}\right)$

$$
(a+b)^{3}=1\left[a^{3}\right]+3\left[a^{2} b\right]+3\left[a b^{2}\right]+1\left[b^{3}\right]
$$

Pascal's Triangle: Divide a triangle into rows. Split the second row with a vertical line from the center of the cell above; divide the remaining rows the same way. 1's go in all the edge cells. All other cells get the sum of the two adjoining cells above, i.e., $1+1=2,1+2=3 \ldots$

Binomial expansion: To avoid multiplying $(\boldsymbol{a}+\boldsymbol{b})^{n}$ just write ' $\boldsymbol{a b}$ ' $\boldsymbol{n}+\mathbf{1}$ times. Number the exponents on \boldsymbol{a}, left to right, from \boldsymbol{n} to zero; the \boldsymbol{b} exponents from zero to \boldsymbol{n}. Coefficients for each 'ab' term are the cells from row \boldsymbol{n} of the triangle; first term gets $\boldsymbol{r}=\boldsymbol{0}$, last term gets $\boldsymbol{r}=\boldsymbol{n}$. Signs are all $\boldsymbol{+}$ 've for $(a+b)$, and alternate $\boldsymbol{+},-,+, \ldots$ for $(a-b)$ always starting + 've. Substitute values or expressions for \boldsymbol{a} and \boldsymbol{b}.

$$
(a \pm b)^{7}=+\mathbf{1} a^{7} b^{0} \pm 7 a^{6} b^{1}+\mathbf{2 1} a^{5} b^{2} \pm \mathbf{3 5} a^{4} b^{3}+\mathbf{3 5} a^{3} b^{4} \pm \mathbf{2 1} a^{2} b^{5}+7 a^{1} b^{6} \pm \mathbf{1} a^{0} b^{7}
$$

Calculating Binomial Coefficients

Beyond row 6 or 7, Pascal's triangle is not the best tool for this
 the n from $(a+b)^{n}$ (blue numbers on triangle); the r (red numbers on triangle) is which term, zero through n, to get the coefficient for.

$$
\begin{gathered}
\text { Formula* }^{*} \\
n \mathrm{C} r=\frac{n!}{r!(n-r)!}=\binom{n}{r}
\end{gathered}
$$

*The ! means "factorial" as discussed below.

Pascal's Properties

Every binomial coefficient can be found by adding cells, by the choose function, $n \mathbf{C} r$, or by the formula for the choose function.

The cell values are symmetric about the vertical centerline.
The cell values of each row n add up to $2^{n} ; 2^{n}$ is the number of subsets any set of n objects contains.

On a large scale (100's of rows) many regular patterns of groupings with common factors appear -5 's are very strong.

" n factorial" means...	Factorials!	memorize!		
$n!=1 \times 2 \times 3 \times \cdots \times n$		$0:=1$ $1!=1$		$4!=24$ $5!=120$

Counting

Note: With these kinds of problems the first step is to always figure out which kind of problem it is. Practice that skill, get good at that and you'll have no problem applying the formulas. There are four general types of problems you should be familiar with.

