Exponents and Logarithms

Properties of Logarithms

Definition
Null property
Identity

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

Product property $\log _{b} m n=\log _{b} m+\log _{b} n$

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

Quotient property

$$
\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n
$$

Power properties

$$
\log _{b} m^{p}=p \log _{b} m
$$

$$
b^{\log _{b} x}=x
$$

Change of base

Natural log
Root properties

$$
\log _{b} 1=0
$$

$$
\log _{b} b=1
$$

Common log

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

$$
a^{-m}=\frac{1}{a^{m}}
$$

$$
\begin{array}{r}
a^{\frac{1}{m}}=\sqrt[m]{a} \\
a^{\frac{m}{n}}=\sqrt[n]{a^{m}}
\end{array}
$$

Iff $x=b^{y}$ then $\log _{b} x=y$

Distributive properties

$$
(a b)^{m}=a^{m} b^{m}
$$

$$
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}
$$

Inverse property

Domain limit
$\log x=\log _{10} x$
$\ln x=\log _{e} x$
$\log _{b}-m$ is NOT real

Properties of Radicals

Identity

$$
\sqrt[m]{a^{m}}=a
$$

Power property
Quotient property

$$
\begin{array}{r}
\sqrt[m]{a b}=\sqrt[m]{a} \cdot \sqrt[m]{b} \\
\sqrt[m]{\frac{a}{b}}=\frac{\sqrt[m]{a}}{\sqrt[m]{b}} \\
\hline
\end{array}
$$

Domain limit $\sqrt[n]{-a}$ is NOT real iff n is even
compound interest
$A=P\left(1+\frac{r}{n}\right)^{n t}$

Growth and Decay
continuous growth/decay
$A=P e^{r t}$

Parent Functions
in standard position

Exponential
$\frac{(0,1)}{\boldsymbol{y} / \sigma_{(1, b)}^{(1)}} \boldsymbol{x}$
$y-k= \pm a b^{ \pm c(x-h)}$

