DEFINITION

Limits describe a function's behavior as the independent variable approaches a certain value; a limit does not depend on the value of the function at that point. Oscillation is a common case where no limit exists; unbounded increase/decrease has limits of +/- infinity.

Notation

Two-sided limits

"The limit of $f(x)$ as x approaches a "

$$
\lim _{x \rightarrow a} f(x)
$$

A two-sided limit only exists if both one-sided limits exist and are equal.

One-sided limits
"The limit of $f(x)$ as x approaches a from the left"

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

"The limit of $f(x)$ as x approaches a from the right"

$$
\lim _{x \rightarrow a^{+}} f(x)
$$

Limits at infinity
"The limit of $f(x)$ as x approaches positive infinity"

$$
\lim _{x \rightarrow+\infty} f(x)
$$

"The limit of $f(x)$ as x approaches negative infinity"

$$
\lim _{x \rightarrow-\infty} f(x)
$$

* $\lim f(x)$ is used when all preceding cases apply.

Properties of Limits

The limit of a constant is that constant:

$$
\lim c=c
$$

The limit of a sum is the sum of the limits:
$\lim [f(x)+g(x)]=\lim f(x)+\lim g(x)$
The limit of a difference is the difference of the limits:
$\lim [f(x)-g(x)]=\lim f(x)-\lim g(x)$
The limit of a product is the product of the limits:
$\lim [f(x) \cdot g(x)]=\lim f(x) \cdot \lim g(x)$
The limit of a quotient is the quotient of the limits:
$\lim \frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}, \lim g(x) \neq 0$
The limit of a power is the power of the limit:
$\lim [f(x)]^{n}=[\lim f(x)]^{n}$
The limit of a root is the root of the limit:

$$
\lim \sqrt[n]{f(x)}=\sqrt[n]{\lim f(x)}
$$

Evaluating Limits

Limits are evaluated using many different techniques, among which are: examination (pattern recognition), substitution, and algebraic simplification. The following theorems apply for $n>0$.

> Polynomials
> $\lim _{x \rightarrow a} c x=c \lim x \quad \lim _{x \rightarrow a} x=a \quad \lim _{x \rightarrow a} f(x)=f(a)$
> $\lim _{x \rightarrow a}\left(c_{n} x^{n}+c_{n 0-1} x^{n-1}+\cdots\right)=c_{n} a^{n}+c_{n-1} a^{n-1}+\cdots$
> $\lim _{x \rightarrow \pm \infty}\left(c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots\right)=c_{n} \lim _{x \rightarrow \pm \infty} x^{n}$
$\lim _{x \rightarrow a^{-}} \frac{1}{x-a}=-\infty$
Rationals
$\lim _{x \rightarrow a^{+}} \frac{1}{x-a}=+\infty$
$\lim _{x \rightarrow 0^{+}} \frac{1}{x^{n}}=+\infty$
$\lim _{x \rightarrow \pm \infty} \frac{1}{x-a}=0$
$\lim _{x \rightarrow \pm \infty} \frac{1}{x^{n}}=0$
$\lim _{x \rightarrow 0^{-}} \frac{1}{x^{n}}=-\infty, n$ odd $\quad \lim _{x \rightarrow 0^{-}} \frac{1}{x^{n}}=+\infty, n$ even
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f(a)}{g(a)}, g(a) \neq 0$
$\lim _{x \rightarrow \pm \infty} \frac{a x^{n}+b x^{n-1}+\cdots}{c x^{m}+d x^{m-1}+\cdots}=\frac{a}{c} \lim _{x \rightarrow \pm \infty} x^{n-m}$

Composition of Functions

$\lim f(g(x))=f(\lim g(x))$

