Rational Expressions

The term "rational" comes from ratio; a rational expression is a ratio of expressions.

A rational number is a number formed	
by the division, or "ratio," of two integers P	
and Q, where $Q \neq 0$, and is characterized by	
a decimal representation that either	
terminates or repeats.	
Examples $Q$$=\frac{1}{4}=0.25 \quad \frac{P}{Q}=\frac{1}{3}=0 . \overline{333}$	

A rational function is a function formed by the division, or "ratio," of two polynomials $P(x)$ and $Q(x)$ where $Q(x) \neq 0$, and is characterized by a discontinuity at $Q(x)=0$.

Example

$$
\frac{P(x)}{Q(x)}=\frac{x^{4}-3 x^{3}}{x^{3}-3 x^{2}-x+3}
$$

VA: Vertical Asymptote ∞ HA: Horizontal Asymptote ∞ SA: Slant Asymptote ∞ Y-Int: Y-Intercept ∞ Zeros ∞ Holes
All rational functions have some of these distinguishing features depending on the properties of the functions composing the numerator and denominator. Graphs can cross horizontal and slant asymptotes but never cross a vertical asymptote.

Finding Critical Points

For a rational function with polynomials $P(x)$, for a numerator, and $Q(x)$, for a denominator, with no common factors, leading coefficients p and q, and degrees m and n, respectively:

$$
\underline{\text { Zeros }} P(x)=0
$$

...at factors cancelled during simplification process, i.e., $(x-3)$ above.

$$
\frac{\text { Vertical Asymptotes }}{Q(x)=0}
$$

Horizontal Asymptotes
$m<n: y=0$
$m=n: p / q$
$m>n$: none

$\underline{\text { Y-Intercepts }}$
 $x=0$

Slant Asymptotes

$m=n+1$ and
$P(x) / Q(x)$ has a remainder; SA at $a x+b$ part of quotient
(by long division).

Other Tests			
$\underline{\text { Sign Test }}$	T-Table	End-Point Behavior	Bounces and Jogs
	x y x		
$\stackrel{a}{a}{ }_{1}^{b}$	x $f(x)$	How does the parent function	Multiplicity:
	$0{ }^{0} \mathrm{y}$-int	of the simplified expression	EVEN multiples of a factor
$(x-a)-$ + + + $(x-b)-$ - + + $(x-a)$	x zeros	behave as $x \rightarrow \pm \infty$?	"bounce" at their zero;
$(x-b)-$ $(x-c)-$	${ }^{x}$ holes		ODD multiples "jog" through
Product - + + - -	asymp HA		their zero, i.e., x^{3}.

