DEFINITIONS AND FORMULAS

A Sequence is a list of values separated by commas.
A Series is the indicated sum of a sequence; the commas are replaced by plus signs.
A term is any of the individual values of a sequence or series.

ARITHMETIC, GEOMETRIC, AND RECURSIVE

Definition

Arithmetic Sequences and Series
An arithmetic sequence has a common difference d $a_{n}=a_{1}+(n-1) d$
between each successive term given by: $a_{n+1}-a_{n}$.
Geometric Sequences and Series
A geometric sequence has a common ratio r between successive terms given by: g_{n+1} / g_{n}.

Recursive Sequences and Series

A recursive sequence has a common formula involving preceding term(s), between successive terms, given as $f\left(t_{n-1,2, \ldots}\right)$.

Formulas
$\underline{n^{\text {th }} \text { term }} \quad \underline{n^{\text {th }} \text { sum }}$
$A_{n}=n\left(\frac{a_{1}+a_{n}}{2}\right)$
infinite sum
D.N.E.
$g_{n}=g_{1}{ }^{n-1}$
$G_{n}=\frac{g_{1}\left(1-r^{n}\right)}{1-r}$
$G=\frac{g_{1}}{1-r}$

FINDING AN $\boldsymbol{n}^{\text {th }}$ TERM EXPRESSION

1) Do the terms have a common difference \boldsymbol{d} ? Use the formula above for the $n^{\text {th }}$ term of an arithmetic sequence.
2) Do the terms have a common ratio \boldsymbol{r} ? Use the formula above for the $n^{\text {th }}$ term of a geometric sequence.
3) Is it a common sequence (see lower right), or some variation thereof?
4) Write out the sequence left to right; number above each term with the value of n for that term; look for a pattern between the n's and the terms of the sequence.
5) Use (-1$)^{n}$ or $(-1)^{n-1}$ for alternating signs between terms.

Convergence

A sequence is said to converge if its individual terms approach some discreet value: a sequence only converges if the value of its even terms and the value of its odd terms both approach the same value.

A series is said to converge if its sum approaches some discreet value; the more terms that are added, the closer the sum converges to its limit (infinite terms = infinitely close): geometric series with $|\boldsymbol{r}|<1$ always converge.

MacLaurin Series

A function may be approximated about any point x_{0} by an appropriate series known as a Taylor series. If $x_{0}=0$ then the series is known as a MacLaurin series. The MacLaurin series approximations for some important functions are shown below.

$$
\begin{aligned}
& \pi=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} \quad e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \\
& \sin x=\sum_{k=0}^{\infty} \begin{array}{c}
\underline{\sin x} \\
(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}
\end{array} \\
& \cos x=\sum_{k=0}^{\boldsymbol{\operatorname { c o s } \boldsymbol { x }}}(-1)^{k} \frac{x^{2 k}}{(2 k)!} \\
& \text { binomial theorem } \\
& (1+x)^{m}=\sum_{k=0}^{\infty} \frac{m(m-1) \cdots(m-k+1)}{k!} x^{k}
\end{aligned}
$$

Common Sequences

$1,2,3,4,5,6 \ldots$	arithm: $d=1$ recur: $t_{n-1}+1$
$1,3,5,7,9,11 \ldots$	arithm: $d=2$
	recur: $t_{n-1}+2$
$2,4,6,8,10,12 \ldots$	arithm: $d=2$
	recur: $t_{n-1}+2$
$2,4,8,16,32,64 \ldots$	geom: $r=2$
	recur: $2 t_{n-1}$
$1,10,100,1000 \ldots$	geom: $r=10$
	recur: $10 t_{n-1}$
$1,2,3,5,8,13 \ldots$	recur: $t_{n-2}+t_{n-1}$
$1,4,9,16,25,36 \ldots$	n^{2}
$1,8,27,64,125,216 \ldots$	n^{3}
$1,2,6,24,120,720 \ldots$	$n!$
$2,3,5,7,11,13,17,19 \ldots$	prime \#'s

