TRIANGLE TRIGONOMETRY

Definitions

polygon - A closed plane figure formed by three or more line segments joined at their endpoints.

right angle – A 90° angle. *right triangle* – A triangle with a right angle. *triangle* - A three sided polygon.

hypotenuse – The side opposite the right angle of a right triangle; also the longest side of a right triangle.

altitude – A perpendicular (90°) line segment from one side of a triangle to the opposite vertex.

median – A line segment from one vertex of a triangle to the midpoint of the opposite side.

Triangle Centers

circumcenter	incenter	centroid	orthocenter
intersection of	intersection of	intersection of medians;	intersection of
perpendicular bisectors	angle bisectors	also the center of gravity	altitudes

Postulates, theorems, and corollaries

Angle sum theorem - The sum of the angles in a triangle is 180°. corollaries: The acute angles of a right triangle are complimentary; There can be at most one right or obtuse angle in a triangle.

 3^{rd} angle theorem – If two angles of a triangle are congruent (\cong) to those of another, then the 3^{rd} angles are \cong .

Exterior angle theorem – An exterior angle of a triangle is equal to the sum of the two remote interior angles.

SSS postulate – If the sides of one triangle are \cong to those of another, then the triangles are \cong .

SAS postulate – If two sides and the included angle of a triangle are \cong to those of another, then the triangles are \cong .

ASA postulate - If two angles and the included side of a triangle are \cong to those of another, then the triangles are \cong .

AAS theorem – If two angles and a nonincluded side of a triangle are \cong to those of another, then the triangles are \cong .

Isoceles triangle theorem – If two sides of a triangle are \cong , then the angles opposite those sides are \cong .

Right Triangles

Trignometric Functions SOH-CAH-TOA $Sin = \frac{Opp}{Hyp} \quad Cos = \frac{Adj}{Hyp} \quad Tan = \frac{Opp}{Adi}$ Reciprocal functions $csc = \frac{hyp}{opp}$ $sec = \frac{hyp}{adj}$ $cot = \frac{adj}{opp}$ Inverse functions

$$\sin^{-1}\left(\frac{opp}{hyp}\right) = \theta \qquad \cos^{-1}\left(\frac{adj}{hyp}\right) = \theta$$
$$\tan^{-1}\left(\frac{opp}{adj}\right) = \theta$$

Right trangles

$$A = \frac{1}{2}bh$$

Area

Oblique triangles

SAS known SSS known $A = \frac{1}{2}ab\sin C \qquad A = \sqrt{s(s-a)(s-b)(s-c)}$ $s = \frac{1}{2}(a+b+c)$

Heron's formula

Oblique Triangles

acute all angles less than 90° equilateral = equiangular isoceles scalene 2 sides equal no sides equal obtuse one angle greater than 90°

Law of cosines

 $a^2 = b^2 + c^2 - 2bc \cos A$ used if SAS or SSS known

Law of sines

$$\frac{\sin \overline{A}}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

used if AAS or ASA known or for SSA the "ambiguous case"

805-610-1725 ©Physics Phor Phun