TriAngle TRIGONOMETRY

Math and Science tutoring 805-610-1725

Definitions

polygon - A closed plane figure formed by three or more line segments joined at their endpoints. triangle - A three sided polygon. right angle - A 90° angle. right triangle - A triangle with a right angle. hypotenuse - The side opposite the right angle of a right triangle; also the longest side of a right triangle. altitude - A perpendicular $\left(90^{\circ}\right)$ line segment from one side of a triangle to the opposite vertex. median - A line segment from one vertex of a triangle to the midpoint of the opposite side.

Triangle Centers

circumcenter
intersection of
perpendicular bisectors
incenter intersection of
angle bisectors
centroid
intersection of medians;
also the center of gravity
orthocenter intersection of altitudes

Postulates, theorems, and corollaries

Angle sum theorem - The sum of the angles in a triangle is 180°. corollaries: The acute angles of a right triangle are complimentary; There can be at most one right or obtuse angle in a triangle. $3^{\text {rd }}$ angle theorem - If two angles of a triangle are congruent $\left(\cong\right.$) to those of another, then the $3^{\text {rd }}$ angles are \cong. Exterior angle theorem - An exterior angle of a triangle is equal to the sum of the two remote interior angles. $\boldsymbol{S S S}$ postulate - If the sides of one triangle are \cong to those of another, then the triangles are \cong. $\boldsymbol{S A S}$ postulate - If two sides and the included angle of a triangle are \cong to those of another, then the triangles are \cong. $\boldsymbol{A S A} \boldsymbol{A}$ postulate - If two angles and the included side of a triangle are \cong to those of another, then the triangles are \cong. $\boldsymbol{A} \boldsymbol{A S}$ theorem - If two angles and a nonincluded side of a triangle are \cong to those of another, then the triangles are \cong. Isoceles triangle theorem - If two sides of a triangle are \cong, then the angles opposite those sides are \cong.

Right Triangles

Trignometric Functions SOH-CAH-TOA

$$
\begin{gathered}
\operatorname{Sin}=\frac{\text { Opp }}{\mathbf{H y p}} \operatorname{Cos}=\frac{\mathbf{A d j}}{\mathbf{H y p}} \text { Tan }=\frac{\text { Opp }}{\mathbf{A d j}} \\
\text { Reciprocal functions }
\end{gathered}
$$

$$
\csc =\frac{\text { hyp }}{\text { opp }} \quad \text { sec }=\frac{\text { hyp }}{\text { adj }} \quad \cot =\frac{\text { adj }}{\text { opp }}
$$

Inverse functions

$$
\begin{gathered}
\sin ^{-1}\left(\frac{\text { opp }}{\text { hyp }}\right)=\theta \quad \cos ^{-1}\left(\frac{\text { adj }}{\text { hyp }}\right)=\theta \\
\tan ^{-1}\left(\frac{\text { opp }}{\text { adj }}\right)=\theta
\end{gathered}
$$

\square

Area

Right trangles

$A=\frac{1}{2} b h$

Oblique triangles

$$
\begin{array}{cc}
\text { SAS known } & \text { SSS known } \\
A=\frac{1}{2} a b \sin C & A=\sqrt{s(s-a)(s-b)(s-c)} \\
& s=\frac{1}{2}(a+b+c) \\
& \text { Heron's } \text { formula }
\end{array}
$$

Oblique Triangles

Law of cosines $a^{2}=b^{2}+c^{2}-2 b c \cos A$ used if SAS or SSS known

$$
\begin{gathered}
\text { Law of sines } \\
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
\end{gathered}
$$

used if AAS or ASA known or for SSA the "ambiguous case"

*AAA has no solution

